PRELIMINARY COMMUNICATION

Generation of fluorochlorocarbene by the mercurial route

The recent intense interest in the reactions of fluorochlorocarbene with olefins, as evidenced by six publications on this subject this year¹⁻⁶, prompts us to report concerning the generation of this species by thermolysis of phenyl(fluorodichloromethyl)mercury, $C_6H_5HgCCl_2F$, in refluxing benzene solution. The previous procedures for CFCl generation used the action of strong base on RCCl₂F derivatives such as fluorodichloromethane^{6,7,8}, methyl fluorodichloroacetate^{4,9} and sym-difluoro-tetrachloroacetone^{1,2,5,9,10}, or the high temperature (150°) reaction of fluorodichloromethane with ethylene oxide in the presence of a catalytic quantity of tetraethyl-ammonium bromide³. While these procedures find useful application in many cases, the requirements of strongly basic reaction conditions or of higher temperature limit their more general application, and in some cases the mercurial route will be the only applicable one.

The mercurial reagent can be prepared by the reaction of phenylmercuric chloride with fluorodichloromethane and potassium tert-butoxide (the tert-butanol monosolvate¹¹) in 1:6.5:2 molar ratio, respectively, in anhydrous diethyl ether at ca. -30° with high speed stirring. In this variation (in solvent and temperature) of our

$$C_6H_5HgCl+CHCl_2F+tert-BuOK \rightarrow C_6H_5HgCCl_2F+tert-BuOH+KCl$$
 (1)

published procedure for $C_6H_5HgCX_3$ compounds¹² pure $C_6H_5HgCCl_2F$ was never obtained in the many runs carried out*. In all cases an unresolvable, roughly 1:4 mixture of diphenylmercury and the desired mercurial was obtained in 40–50% yield. The presence of the Hg–CCl₂F moiety was demonstrated by hydrogen chloride cleavage of the mercury compound mixture to give phenylmercuric chloride and ClHgCCl₂F, m.p. 149–151°. Exhaustive brominolysis of the mercurial mixtures and GLPC determination of the bromobenzene and fluorodichlorobromomethane produced served excellently in the quantitative analysis of these mixtures. These mixtures then were used in the reactions with the substrates indicated in Table 1; the diphenylmercury contaminant did not interfere. In general, the reactivity of C_6H_5 -HgCCl₂F approximates that of phenyl(trichloromethyl)mercury¹³ in that reaction times of *ca.* 48 h in refluxing benzene solution were required to obtain the product yields listed. The general experimental procedure used in C_6H_5 HgCX₃/olefin reactions¹³ was applicable.

Examination of Table 1 makes apparent several points of interest concerning mercurial-derived CFCl. As with the $C_6H_5HgCCl_nBr_{3-n}$ reagents, base-sensitive olefins can be converted to dihalocyclopropanes, *e.g.*, the examples of acrylonitrile and vinyl acetate. The 1-fluoro-1-chlorocyclopropanes are produced in generally excellent yields, in contrast to the generally poorer yields obtained by the other methods

^{*} It may be noted that use of benzene as solvent, as described in ref. 12, gave only minor amounts of $C_6H_5HgCCl_5F$ when the reaction described by eqn. 1 was attempted.

TABLE 1

REACTIONS OF PHENYL (FLUORODICHLOROMETHYL) MERCURY[#]

Substrate	Product ^b (% Yield)	$n_{\rm D}^{25}$	Comments
cyclohexene	F (86)	1.4591	mixed isomers, lit. ³ n_D^{20} 1.4603
cyclooctene	F (91)	1.4707	mixed isomers, lit. ³ n_D^{20} 1.4712
trans-EtCH=CHEt	Et F Et (97) Cl	1.4071	
cis-EtCH=CHEt	$ \begin{array}{cccc} Et & Et & Et & Et \\ \hline F & + & F \\ C_{1} & F \\ \hline (1:12 \text{ ratio}) \end{array} $ (86)	1.4129 (mixed isomers)	
CH ₃ CO ₂ CH=CH ₂	СH ₃ CO ₂ СI (86)	1.4113	mixed isomers
CH₂=CHCN	NC F (40)	1.4276	mixed isomers
	F_Ci (75) +CHCIF	1.4483	mixed isomers
Ei ₃ SiH Me ₃ SnSnMe ₃	Et ₃ SiCClFH (83) Me ₃ SnCClFSnMe ₃ (36)	1.4351 1.5253	by products include Me3SnCCl2SnMe3 (8%), Me3SnCl, Me3SnPh, Me2SnPh2

^a Substrate/PhHgCCl₂F ratio = 3. Reactions in refluxing benzene for 48 h. ^b Satisfactory microanalyses were obtained for all products. Their IR and/or NMR spectra were in agreement with the structure written.

mentioned¹⁻¹⁰. The mercurial-derived CFCl adds to olefins in a stereospecific manner^{*}. In agreement with the greater selectivity of CFCl when compared with CCl₂

^{*} The same observation was made in the addition of CFCl, produced by the $(CFCl_2)_2CO/base$ reaction, to olefins by Moss and Gerstl¹. Our structural assignments for the isomeric fluorochlorocyclopropanes produced from *cis*- and *trans*-3-hexene (via ¹⁹F NMR) parallel their assignments in the case of *cis*- and *trans*-2-butene.

in olefin reactions², we find that CFCl is much more selective than CCl₂ with respect to C=C addition vs. C-H insertion. In the case of 2,5-dihydrofuran, the ratio of C=C addition to α C-H insertion was nearly equal to one for CCl₂¹³, but this ratio was 9 in the case of fluorochlorocarbene. Furthermore, CFCl insertion into the very reactive (to CCl₂) β C-H bond of PhMe₂SiCH₂CHMe₂^{14*} was not observed. However, CFCl is capable of undergoing insertion reactions into more reactive single bonds, as evidenced by its reactions with triethylsilane and hexamethylditin. These reactions with the C-H bond of 2,5-dihydrofuran, the Si-H bond and the Sn-Sn bond are the first CFCl insertion reactions to be reported.

As with phenyl(trichloromethyl)mercury¹⁶, the action of sodium iodide on $C_6H_5HgCCl_2F$ produces a more rapid release of carbene from the mercurial. For example, the reaction of $C_6H_5HgCCl_2F$ with slightly more than one equivalent of anhydrous sodium iodide in the presence of cyclohexene in 1,2-dimethoxyethane (DME) at 85° gave 7-fluoro-7-chloronorcarane in 70% yield after a reaction time of only 3 h. In the case of the $C_6H_5HgCCl_3/NaI$ reagent system, reactions with acrylo-

nitrile and vinyl acetate served to implicate the trichloromethyl anion as an intermediate, since among the products obtained were $CCl_3CH_2CH_2CN$ and CH_3CO_2 - $CH(CH_3)CCl_3$, respectively¹⁶. Similar reactions were carried out between the C_6H_5 -HgCCl_2F/NaI reagent and these functional olefins, but here no CCl_2F^- derived products were obtained. Only the expected fluorochlorocyclopropanes (in 33 and 70% yield, respectively) could be detected. This finding does not speak against nucleophilic displacement of CCl_2F^- by I⁻ in processes such as reaction (2), rather, in our opinion, it is best interpreted in terms of the instability of the fluorochloromethyl anion (as compared to CCl_3^-) with respect to chloride ion loss to form fluorochlorocarbene. It has been noted that a fluorine substituent destabilizes a trihalomethyl anion but stabilizes the derived dihalocarbene¹⁷.

The results of this work have clearly demonstrated the utility of phenyl-(fluorodichloromethyl)mercury as a CFCl transfer agent. Our efforts in this area are continuing and details of this work will be provided at a later date.

Acknowledgments

The authors are grateful to the Directorate of Chemical Sciences, U.S. Air Force Office of Scientific Research for generous support of this work and to M &T Chemicals, Inc. for gifts of chemicals. This investigation was supported in part by U.S. Public Health Service Fellowship 5-Fl-GM-23,497 (to K.V.D.).

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Mass., 02139 (U.S.A.) DIETMAR SEYFERTH KIRK V. DARRAGH

^{*} See the preliminary communication on this general type of reaction (Ref. 15).

- 1 R. A. MOSS AND R. GERSTL, Tetrahedron, 23 (1967) 2549.
- 2 R. A. MOSS AND R. GERSTL, J. Org. Chem., 32 (1967) 2268.
- 3 P. WEYERSTAHL, D. KLAMANN, C. FINGER, F. NERDEL AND J. BUDDRUS, Chem. Ber., 100 (1967) 1858.
- 4 T. ANDO, H. YAMANAKA, S. TERABE, A. HORIKE AND W. FUNASAKA, Tetrahedron Letters, (1967) 1123.
- 5 L. GHOSEZ, G. SLINCKX, M. GLINEUR, P. HOET AND P. LAROCHE, Tetrahedron Letters, (1967) 2773.
- 6 M. SCHLOSSER AND G. HEINZ, Angew. Chem., 79 (1967) 617.
- 7 G. C. ROBINSON, Tetrahedron Letters, (1965) 1749.
- 8 W. E. PARHAM AND R. R. TWELVES, J. Org. Chem., 22 (1957) 730.
- 9 R. A. MOORE AND R. LEVINE, J. Org. Chem., 29 (1964) 1883.
- 10 B. FARAH AND S. HORENSKY, J. Org. Chem., 28 (1963) 2494.
- 11 A. J. SPEZIALE AND K. W. RATTS, J. Am. Chem. Soc., 84 (1962) 854.
- 12 D. SEYFERTH AND J. M. BURLITCH, J. Organometal. Chem., 4 (1965) 127.
- 13 D. SEYFERTH, J. M. BURLITCH, R. J. MINASZ, J. Y.-P. MUI, H. D. SIMMONS, JR., A. J.-H. TREIBER AND S. R. DOWD, J. Am. Chem. Soc., 87 (1965) 4259.
- 14 D. SEYFERTH AND S. S. WASHBURNE, unpublished work.
- 15 D. SEYFERTH AND S. S. WASHBURNE, J. Organometal. Chem., 5 (1966) 389.
- 16 D. SEYFERTH, M. E. GORDON, J. Y.-P. MUI AND J. M. BURLITCH, J. Am. Chem. Soc., 89 (1967) 959.
- 17 J. HINE AND S. J. EHRENSON, J. Am. Chem. Soc., 80 (1958) 824.

Received October 18th, 1967

J. Organometal. Chem., 11 (1968) P9-P12